Anisotropic Lennard-Jones fluids in a nanochannel

نویسندگان

  • R. M. Hartkamp
  • S. Luding
چکیده

During the past few decades molecular dynamics has been a widely applied tool to simulate fluid confined in micro/nano geometries. What makes interfacial fluids fundamentally different from the bulk fluid is the fact that their density varies considerably over microscopic distances. A class of such strongly inhomogeneous fluids are fluids confined in very narrow channels by solid boundaries. In this work, the goal is to study the density and stress terms across the channel. We simulate planar Poiseuille flow of a Lennard-Jones fluid in channels of various widths in the nanoscale regime. A body force and a local thermostat are applied in order to simulate a steady-state flow. Layering and anisotropy in stress are obtained near the walls of the channel, which leads to non-Newtonian rheology. Understanding and quantifying the non-Newtonian behavior is a first step towards deriving a constitutive model that describes locally the behavior of a strongly confined fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory

By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT)  based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...

متن کامل

Wall-induced order in anisotropic Lennard-Jones fluid in a nanochannel

Highly confined fluid or particle flows typically show strongly non-Newtonian behavior. In this study, the relation between the non-Newtonian behavior and the level of confinement is studied. Molecular dynamics simulations, in the canonical ensemble (i.e. the number of particles, volume and temperature are constant), are used to calculate various physical properties. Here we only present the de...

متن کامل

THE DENSITY PROFILES OF A LENNARD -JONES FLUID CONFINED TO A SLIT

The structure of fluids confined by planar walls is studied using density functional theory. The density functional used is a generalized form of the hypernetted chain (HNC) functional which contains a term third order in the density. This term is chosen to ensure that the modified density functional gives the correct bulk pressure. The proposed density functional applied to a Lennard-Jones...

متن کامل

Lennard-Jones and lattice models of driven fluids.

We introduce a nonequilibrium off-lattice model for anisotropic phenomena in fluids. This is a Lennard-Jones generalization of the driven lattice-gas model in which the particles' spatial coordinates vary continuously. A comparison between the two models allows us to discuss some exceptional, hardly realistic features of the original discrete system--which has been considered a prototype for no...

متن کامل

A study of the anisotropy of stress in a fluid confined in a nanochannel.

We present molecular dynamics simulations of planar Poiseuille flow of a Lennard-Jones fluid at various temperatures and body forces. Local thermostatting is used close to the walls to reach steady-state up to a limit body force. Macroscopic fields are obtained from microscopic data by time- and space-averaging and smoothing the data with a self-consistent coarse-graining method based on kernel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010